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We develop a framework for asymptotic optimization of a queueing system. The motivation is the staffing problem of large
call centers, which we have modeled as M/M/N queues with N , the number of agents, being large. Within our framework,
we determine the asymptotically optimal staffing level N ∗ that trades off agents’ costs with service quality: the higher the
latter, the more expensive is the former. As an alternative to this optimization, we also develop a constraint satisfaction
approach where one chooses the least N ∗ that adheres to a given constraint on waiting cost. Either way, the analysis
gives rise to three regimes of operation: quality-driven, where the focus is on service quality; efficiency-driven, which
emphasizes agents’ costs; and a rationalized regime that balances, and in fact unifies, the other two. Numerical experiments
reveal remarkable accuracy of our asymptotic approximations: over a wide range of parameters, from the very small to the
extremely large, N ∗ is exactly optimal, or it is accurate to within a single agent. We demonstrate the utility of our approach
by revisiting the square-root safety staffing principle, which is a long-existing rule of thumb for staffing the M/M/N queue.
In its simplest form, our rule is as follows: if c is the hourly cost of an agent, and a is the hourly cost of customers’ delay,
then N ∗ =R+ y∗�a/c�

√
R, where R is the offered load, and y∗�·� is a function that is easily computable.
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1. Introduction
Worldwide, telephone-based services have been expanding
dramatically in both volume and scope. This has given
rise to a huge growth industry—the (telephone) call center
industry. Indeed, some assess (Call Center Statistics 2000)
that 70% of all customer-business interactions in the U.S.
occur in call centers, which employ about 3% of the U.S.
workforce (several million agents). Marketing managers
refer to call centers as the modern business frontier, being
the focus of Customer Relationship Management (CRM);
Operations managers are challenged with the fact that per-
sonnel costs, specifically staffing, account for over 65% of
the cost of running the typical call center. The trade-off
between service quality (marketing) and efficiency (opera-
tions), thus, naturally arises, and a central goal of ours is
to contribute to its understanding.
We argue that call centers typify an emerging busi-

ness environment in which the traditional quality-efficiency
trade-off paradigm could collapse: Extremely high levels
of both service quality and efficiency can coexist. Con-
sider, for example, a best-practice U.S. sales call center
that attends to an average of 15,000 phone callers daily;
the average duration of a call is four minutes, and the
variability of calls is significant; agents are highly utilized

(over 90%), yet customers essentially never encounter a
busy signal, hardly anyone abandons while waiting, the
average wait for service is a mere few seconds, and about
half of the customers find, upon calling, an idle agent to
serve them immediately. Prerequisites for sustaining such
performance, to the best of our judgment, are technology-
enabled economies of scale and scientifically-based man-
agerial principles and laws. In this paper, we develop an
analytical framework (§§4 and 9) that supports such prin-
ciples. It is based on asymptotic optimization, which yields
insight that does not come out of exact analysis. A con-
vincing example is the square-root safety staffing principle,
described in §2 below. It supports simple, useful rules of
thumb for staffing large call centers, rules that so far have
been justified only heuristically. Indeed, rigorous asymp-
totic justifications of such rules are not common in the
operations research literature. Hence, another goal here is
to convince the reader of their benefits.

1.1. Costs, Optimization, and
Constraint Satisfaction

The cost of staffing is the principal component in the oper-
ating expenses of a call center. The staffing level is also
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the dominant factor to determine service level, as mea-
sured in terms of delay statistics: Poor service levels incur
either opportunity losses due to deteriorating goodwill, or
more direct revenue losses in case of abandonment and
blocking (busy signals). While the need to balance service
quality and staffing cost is universal, the weight placed on
each may vary dramatically. In some call centers, provid-
ing maximal customer care is the primary drive whereas in
others, handling a high traffic volume at minimal cost is the
overriding goal. The challenge, so we argue, is to translate
such strategically articulated goals into concrete staffing
levels: Simply put, how many agents are to be staffed in
order to provide acceptable service quality and operational
efficiency? In this paper, we answer this question for the
M/M/N (Erlang-C) queue, which is the simplest yet most
prevalent model that supports call center staffing. In future
research we hope to add crucial features of call centers such
as abandonment and retrials (Mandelbaum et al. 2002).
Within the M/M/N model, we postulate a staffing cost

function F �N� for employing N agents. We assume that
(a continuous extension of) F �N� is convex and strictly
increasing, which also covers linear costs. The convexity
assumption is motivated by the property that the hourly
salary tends to increase with the demand in tight labor
markets. The fact that the supply of labor is an issue is
indirectly supported by the observation that the availability
of a low-cost labor force is a major consideration for the
location of call center businesses. Low costs (small N ) give
rise to long waits, which we quantify in terms of a delay
cost function D�t� for a customer being served after wait-
ing t units of time. When F dominates D (or conversely D
dominates F ), the least costs are achieved in an efficiency-
driven (or conversely a quality-driven) operation. When F
and D are comparable, optimization leads to a rational-
ized operation which, as it turns out, is robust enough to
encompass most circumstances. Formally, the three regimes
emerge from an asymptotic analysis of the M/M/N queue,
as the arrival rate � and, accordingly, the optimal staffing
level N ∗

� , both scale up to infinity. We refer to such respon-
sive staffing, in response to increased load, as dimensioning
the call center, which inspired our title. While the staffing
levels that we recommend are only asymptotically opti-
mal, they are nevertheless remarkably accurate—to within
a single agent in the majority of cases. The asymptotics
also provide insight, beyond that of exact analysis, about
the dependence of the optimal N ∗

� on �, F , and D.
In industry practice, staffing levels are rarely deter-

mined through optimization. One reason is that there is no
standard practice for quantifying waiting costs, let alone
abandonment, busy-signal and retrial costs; see Andrews
and Parsons (1993) for some attempts. Thus, if not by
mere experience-based guessing, common practice seeks
the least number of agents N ∗ that satisfies a given con-
straint on service level. The latter is expressed in terms
of some congestion measure, for example the industry-
standard Total Service Factor (TSF) given by

TSF= PrWait> T �� for some T � 0�

perhaps combined with 1-800 operating costs. We call this
practice constraint satisfaction. It is to be contrasted with
our previous optimization practice, where N ∗ was deter-
mined by cost minimization.

1.2. Introduction to Our Asymptotic Framework

As already mentioned, the justification for our proposed
optimal staffing level is based on an asymptotic framework,
which we formally develop in §4. Its basic idea is as fol-
lows. The primitives of our call center model are the arrival
rate �, the number of servers N , and the average service
time 1/�. The latter will be fixed throughout our analysis,
while � ↑� is our asymptotic regime, and N is the param-
eter over which we optimize. Specifically, given the staffing
cost function F �N� and the customer’s cost of delay D�t�,
we express the overall cost per unit of time C�N��� in
terms of three entities: staffing costs, waiting costs, and the
probability that an arriving customer is delayed in queue
(Erlang-C formula); see (7). Our goal is to solve the dis-
crete optimization problem that seeks N ∗

� which minimizes
C�N��� and, no less importantly, understand the behavior
of N ∗

� for large �. To this end, we translate the discrete
optimization problem into a continuous one that is easier
to solve, which is carried out by replacing the three enti-
ties above with continuous approximations. The optimal
solution for the continuous optimization problem provides
an approximately optimal solution to our original discrete
problem. The approximation is asymptotically optimal in
that, as � increases indefinitely, the ratio of the overall cost
at the approximate staffing level to the cost at the true opti-
mal level (both reduced by the cost of staffing at the least
level �/� needed to assure stability) converges to unity;
see Corollary 4.3, and the discussion following it.
Having set up the framework for asymptotic optimality,

we then identify continuous approximations to the three
cost entities, doing it separately for each of the rational-
ized, efficiency- and quality-driven regimes described in
the previous subsection (see §§6–8, respectively). We then
derive similar approximations in the context of constraint
satisfaction (§9).
Of central importance to our approximation is the asymp-

totic analysis of Halfin and Whitt (1981), especially their
approximation to the Erlang-C delay function (Lemma 5.1).
It gives rise to a square-root safety staffing principle, which
reads roughly as follows: For Erlang-C, staffing levels must
always exceed the offered load (�/�) to ensure stability;
this excess is naturally measured in units of the square-root
of the offered load, and our optimization problems, in fact,
search for the optimal number y∗ of such units. The value
of y∗ depends on the operational regime under discussion.
For example, y∗ in the rationalized regime is a function of
the cost data, which is independent of �. (The special case
with linear staffing and waiting costs is presented in the
next section.) On the other hand, in the efficiency-driven
regime where fewer resources suffice, y∗ vanishes as � ↑�.
The fundamental law behind the square-root scaling is the
central limit theorem—see Whitt (1992) for further insight.
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1.3. Structure of the Paper

The next section is devoted to an exposition of the square-
root safety staffing principle, followed by a review of the
related literature.
In §3, we set up our M/M/N model and its cost structure.

The framework for asymptotic optimality is introduced in
§4. Its applications require some special functions which
are introduced in §5, notably the Halfin-Whitt delay func-
tion P�·� (Halfin and Whitt 1981), plotted in Figure 3. It
provides an approximation for the delay probability in the
M/M/N queue, N large, which operates in the rationalized
regime. (Some useful properties of P�·� and other functions
are verified in Appendices A–C.) In §§6–8, we analyze the
rationalized, efficiency- and quality-driven regimes, under
the optimization approach. While the analysis is abstract,
each of these sections concludes with examples of spe-
cific cost structures, for concreteness. In §9, we introduce
the constraint satisfaction approach, which gives rise to the
same three regimes of operation as optimization.
Section 10 describes numerical experiments that test the

accuracy of our asymptotically supported approximations.
As already mentioned, the findings are astounding—rarely
do we miss by more than a single agent, as far as optimal
staffing levels are concerned. In addition, even though the
theory is asymptotic, our approximations are accurate with
as few as three agents. In order to apply our approxima-
tions, guidelines are required for fitting a given call center,
represented by its parameters and costs, to one of the three
operational regimes. This turns out simpler than expected.
Indeed, our numerical experiments, backed up by some
theory, clearly establish the robustness of the rationalized
approximation, as it covers accurately both the efficiency-
and quality-driven regimes. Thus, except for extreme set-
tings, the rationalized approximation is the one to use, as
we do in the following section. We conclude in §11 with a
few worthy directions for future research.

2. The Square-Root Safety Staffing
Principle

To recapitulate, we determine asymptotically optimal
staffing levels in accordance with the relative importance
of agents’ costs and efficiency versus customers’ service
quality. The very special case of linear staffing and delay
costs (Example 6.3) already leads to the (re)discovery, as
well as a deeper understanding, of a remarkably robust rule
of thumb, the square-root safety staffing rule. It reads as
follows: Suppose that the arrival rate is � customers per
hour, and service rate is �, which implies that the system’s
offered load is given by R= �/�; if the staffing cost is $c
per agent per hour, and waiting cost is $a per customer per
hour, our recommended number of servers N ∗ is given by

N ∗ =R+ y∗
(a

c

)√
R� (1)

where the function y∗�r�, r � 0, is plotted in Figures 1
and 2; see (23). In simple words, at least R agents (	R
+

Figure 1. y∗�r� as function of r�0� r � 10.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

y*
(r

)
1 to be exact) are required to guarantee stability; how-
ever, safety staffing must be added to the minimum as
a protection against stochastic variability. This number
of additional agents is proportional to

√
R, and the pro-

portionality coefficient y∗�a/c� is determined through the
optimization (23), by the relative importance of customers’
delay (a) to agents’ salary (c).
Note that the right-hand side of (1) need not be an inte-

ger, in which case N ∗ is obtained by rounding it off. We
demonstrate in §10, below (40), that this yields the staffing
level that minimizes waiting plus staffing costs, exactly in
most cases, and off by a single agent in the other ones.
The form of (1) already carries with it important insight.

Let � = y∗�a/c�
√

R denote the safety staffing level (the
excess number of servers above the minimum R = �/�).
Then, with a and c fixed, an n-fold increase in the offered

Figure 2. y∗�r� as function of r , 0� r � 500.
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load R requires that the safety staffing � increases by only√
n-fold, which constitutes significant economies of scale

(Whitt 1992).
Now, suppose that R is measured in 100s, as it is in large

call centers. Then
√

R is in the low 10s, hence � is as
well (since y∗ grows so slowly: y∗�100� ≈ 2�5). It follows
that the bulk of the agents, namely R, must be present for
stability, and only a small fraction �/R = y∗/

√
R of these

must be added as safety against stochastic variability (up
to 10%, and, in fact, significantly less for large call cen-
ters, as the practical values of �/R indicate). This results
in high agent utilization levels R/N ∗—around 90% and up.
Nevertheless, as shown in Examples 2.1–2.3, operational
service quality ranges from the acceptable to the extremely
high. (Indeed, small changes in �, which amounts to small
changes in agents’ utilization, have noticeable effects on
performance.) Thus, we are operating in a regime where
high resource utilization and service level coexist, which
is due to economies of scale that dominate stochastic vari-
ability. It is important and interesting to note that data from
large call centers confirms these observations (Garnett et al.
2002).
Small values of r correspond to efficiency-driven

staffing. In this range, the function y∗�·� is reasonably
approximated by

y∗�r�≈
√

r

1+ r�
√

��/2�− 1� � 0� r < 10�

Large values of r correspond to quality-driven staffing. In
this range, a close lower bound is y∗�r�≈√

s − ln s, where
s = 2 ln�r/√��, r ↑�. (See Remark 6.4 for some details
on these asymptotic expansions.)
Under our square-root safety staffing, it is anticipated

that service level, as expressed by the industry-standard
TSF, equals

TSF= PrWait> T �≈ P�y∗�× e−Ty∗
√

��� y∗ = y∗
(a

c

)
�

in which

P�y∗�=
[
1+ y∗��y∗�

��y∗�

]−1
≈ PrWait> 0�� (2)

is the Halfin-Whitt delay function (Halfin and Whitt 1981)
(see Figure 3 and §5); ��·� and ��·� are the density and
cumulative distribution function of the standard normal dis-
tribution, respectively. A more management-friendly repre-
sentation of TSF is

TSF= PrWait> T ×E�Service Time �

≈ PrWait> 0�× e−T�� (3)

Here delay is measured in units of average service time
(E[Service Time] = 1/�), and � = y∗√R is the safety

Figure 3. The Halfin-Whitt delay function P�y�.
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staffing level. Another service level standard is the aver-
age waiting time, often referred to as Average Speed of
Answer (ASA). With N ∗ as in (1), and again naturally
quantified in units of service durations, it is given by

ASA
1/�

= E�Wait 
E�Service Time 

≈ P�y∗�
�

� (4)

The industry standard for measuring operational efficiency
is agent utilization, namely R/N , which is traded off
against service level. Agents are thus idle, or more appro-
priately described as being available for service, a fraction
�/N of their time.

Example 2.1. Consider, for example, the best-practice call
center, described in the second paragraph of our Introduc-
tion. Assuming 1,800 calls per busy hour, the offered load
equals R = 120. With 90% utilization, one expects that
about N ∗ ≈ 133 agents share the load (� = 13), hence the
center operates with y∗ ≈ 1�22. Inverting y∗�·� in Figure 1
shows that, in this call center, an hour wait of customers is
valued as three times the hourly wage of an agent.
With this staffing level, it is expected that about 15% of

the customers (P�1�22� = 0�15) are delayed; that 5% of
the customers are delayed over 20 seconds (using (3) with
T = 1/12); and that, by (4), ASA equals 2.7 seconds (while
those who were delayed actually averaged 18 seconds
waiting).

But the staffing level in the example can be interpreted
differently. To this end, recall that the prevalent alterna-
tive to the above optimization approach is constraint sat-
isfaction. Specifically, in Example 9.5 it is shown that the
least N that guarantees PrWait> 0� < ! is closely approx-
imated by rounding up

N ∗ =R+P−1�!�
√

R� (5)
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where P�·� is the Halfin-Whitt delay function introduced
in (2). Returning to the above best-practice call center,
P−1�!�= 1�22 yields, as expected, ! = 0�15.
Example 2.2. One should note that a constraint on the
fraction of delayed customers is severe, hence it fits
call centers that cater to, say, emergency calls. This can
be nicely explained within our framework. For exam-
ple, requiring that ! = 0�01, namely one customer out of
100 delayed on average, corresponds to y∗ = P−1�0�01� =
2�38 (see Figure 3), which could be interpreted as saying
(via Figure 2) that a/c = �y∗�−1�2�38�= 75! An evaluation
of customers’ time as being worth 75-fold of agents’ time
seems reasonable only under extreme circumstances: For
example, if the “servers” are “cheap” being, say, Interactive
Voice Response (IVR) units, or customers’ time is highly
valued as with emergency call centers.

Example 2.3. Most call centers define TSF with a posi-
tive T , and then requiring ! = 0�01 need not be extreme.
We now illustrate this by analyzing a prevalent industry
standard, which is to aspire that no more than 80% of the
callers are delayed over T = 20 seconds. Incidentally, we
believe that the source of this standard is the familiar 20 "
80 managerial rule of thumb, stating in great generality and
vagueness that “only 20% of the reasons already give rise
to 80% of the problems.” While there is no apparent reason
for connecting this rule of thumb with any staffing standard,
it is nevertheless worthwhile to note that our framework
provides some interesting implications for using this rule.
This will now be demonstrated via four scenarios which,
for convenience, are also summarized in Table 1.
Consider a large call center with � = 100 calls per

minute, and 4 minutes average call duration. Thus R= 400,
and adhering to the 20 " 80 rule implies that y∗ = 0�53,
hence, N ∗ = 411. By Figure 1, this translates into a/c =
0�32. It follows that, while customers are not highly val-
ued, the 20 " 80 rule is “easy” to adhere to because of the
call center’s size. To wit, increasing N ∗ to 429 amounts
to y∗ = 1�4, or a/c = 4�9, reflecting a significant yet rea-
sonable increase of the relative value of customers’ to
agents’ time. This is accompanied by an increase in server
availability (idleness), from 3% to 7%, which enables an
order-of-magnitude reduction in TSF, from 0.2 to little less
than 0.01: About one out of 100 customers is delayed for
more than 20 seconds.

Table 1. Example 2.3—summary of scenarios.

TSF with T = 20 seconds
� (minute−1) 1/� (minute) R= �/� N ∗ y∗ �/�N ∗�� a/c TSF

100 4 400 411 0�53 0�97 0�32 0�20
100 4 400 429 1�4 0�93 4�9 0�01
30 4 120 140 1�75 0�86 12�5 0�01
240 0�5 120 126 0�53 0�95 0�32 0�01

To underscore the role of scale in the above scenario,
consider a call center with the same offered load parameters
as Example 2.1: Thirty calls per minute, and again four
minutes average call duration. Now R = 120, but it takes
N ∗ = 140 to achieve TSF = 0�01, with T = 20 seconds.
This corresponds to y∗ = 1�75, or a/c = 12�5, a 2.5-fold
increase over the large call center. It is interesting to note
that with an average call duration of 30 seconds (as in
411 services), with T held at 20 seconds, N ∗ = 126 would
suffice, which amounts to y∗ = 0�53 and a/c = 0�32. This
is identical to the large call center with the 20 " 80 rule
operation, but the latter accommodates mean service time
of four minutes, in contrast to the 30 seconds here.

The square-root safety staffing principle emerged from
the simplest cost structure (linear staffing and waiting
costs). While our framework accommodates general costs,
the corresponding safety staffing levels are nevertheless
always proportional to

√
R; it is only the proportionality

coefficient that varies with the cost.

2.1. Related Literature

The square-root safety staffing principle has been part of
the queueing-theory folklore for a long time. Its origin goes
back to Erlang’s 1923 paper, published in Erlang (1948).
Erlang derived the square-root principle via marginal anal-
ysis of the benefit in adding a server, indicating that it had
been practiced, in fact, since 1913. More recently, the prin-
ciple was well documented by Grassmann (1986, 1988) and
then revisited by Kolesar and Green (1998), where both
its accuracy and applicability have been convincingly con-
firmed. The principle was substantiated by Whitt (1992),
then adapted in Jennings et al. (1996) to nonstationary mod-
els. Except for Erlang (1948), all the work we are aware
of has applied infinite-server heuristics; it is grounded
in the fact that the steady-state number of customers in
the M/M/� queue, say Q�, is Poisson distributed with
mean R = �/�. It follows that Q� is approximately nor-
mally distributed, with mean R and standard deviation

√
R,

when R is not too small. To relate this to staffing in the
M/M/N model, one approximates the latter’s probability of
delay by

PrQ�
�N�≈ 1−�

(
N −R√

R

)
�
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Then, the staffing level N ∗ that guarantees ! delay proba-
bility is chosen to be

N ∗ =R+ ��−1�!�
√

R� (6)

where �� = 1−�.
The square-root principle contains two parts: First, the

conceptual observation that the safety staffing level is pro-
portional to the square-root of the offered load; and second,
the explicit calculation of the proportionality coefficient y∗.
Our framework accommodates both of these two needs,
while in all previous works, to the best of our understand-
ing, at least one of them is treated in a heuristic fashion
or simply ignored. (We shall be specific shortly.) More
important, however, is the fact that our approach and frame-
work allow an arbitrary cost structure, and they have the
potential to generalize beyond Erlang-C. For a concrete
example, Garnett et al. (2002) accommodate impatient cus-
tomers: In their main result, the square-root rule arises
conceptually, but the determination of the value of y∗ is
left open. Being specific now, Whitt (1992) and Jennings
et al. (1996) refer to y∗ as a measure of service level, but
leave out any explicit calculation of it. Grassmann (1988),
taking the optimization approach, leads the reader through
an instructive progression of increasingly complex staffing
models, culminating in his “equilibrium model” (Erlang-C),
for which no “square-root” justification is provided. (It is
justified for his less complex model, under the “Indepen-
dence Assumption,” but this amounts to using (6).) Some
numerical experiments, inspired by Grassman (1988), are
reported at the beginning of §10. Finally Kolesar and Green
(1998) advocate the use of (6), in order to support con-
straint satisfaction that achieves PrWait> 0� � !. We, on
the other hand, recommend the use of (5) for constraint sat-
isfaction, which is proven asymptotically accurate in Exam-
ple 9.5. The approximations (5) and (6) essentially coincide
for small values of !, but (5) is uniformly more accurate.
We refer to the beginning of §10 for more details.

3. Model Description
We consider the classical M/M/N (Erlang-C) model with
N servers and infinite-capacity waiting room. Customers
arrive as a Poisson process of rate �, and have independent
exponentially distributed service times with mean 1/�. The
service rate � will be arbitrary but fixed, whereas the arrival
rate � will grow large in order to obtain asymptotic scaling
results. We assume �/N� < 1 for stability. Customers are
served in order of arrival; then (see, for instance, Cooper
1981) the waiting-time distribution is given by

PrWait> t�=��N��/�� e−�N�−��t�

where the probability of waiting ��N��/��= PrWait> 0�
is determined by

��N�$�= $N

N !
{
�1− $/N�

N−1∑
n=0

$n

n! +
$N

N !
}−1

�

We consider the problem of determining the staffing
level N that optimally balances staffing cost against quality-
of-service. To this end, a staffing cost F �N� per unit of
time is associated with staffing N servers. As mentioned
in the Introduction, we assume that F �N� is also defined
for all noninteger values N > �/�, and that this extended
function F �·� is convex and strictly increasing, which also
covers linear costs.
Quality-of-service is quantified in terms of a waiting-

cost function D��·�: A cost D��t� is incurred when a cus-
tomer waits for t time units. (The subscript � is attached
to allow for the possibility that the primitives vary with the
arrival intensity.) We assume that D��·� is strictly increas-
ing. Without loss of generality, we may take D��0� = 0.
The expected total cost per unit of time is then given by

C�N���= F �N�+�E�D��Wait� 

= F �N�+���N��/��G�N���� (7)

where

G�N���= E�D��Wait� �Wait> 0 
= �N�−��

∫ �

0
D��t� e

−�N�−��t dt�

Notice that G�N��� is also defined for all noninteger val-
ues N > �/�. We assume that D��·� is such that G�N���
is finite for all �/� < N .
We are interested in determining the optimum staffing

level

N ∗
� "= argmin

N>�/�

C�N ��� (8)

(the minimization being over integer values). To see that
N ∗

� is well defined, notice that limN→� F �N�=�, and thus
limN→� C�N��� =�. Hence, C�N��� indeed achieves a
minimum value.

4. Framework for Asymptotic Optimality
In principle, the optimum staffing level N ∗

� in Equation (8)
may be obtained through brute-force enumeration. Rather
than determining the optimum staffing level numerically,
however, we are primarily interested in gaining insight into
how N ∗

� grows with the arrival intensity �, and how it
depends on the staffing and waiting cost functions F �N�
and G�N���. In order to do so, we develop an approximate
analytical approach for determining the optimum staffing
level. As a first step, we translate the discrete optimiza-
tion problem (8) into a continuous one. The next step is
to approximate the latter problem by a related continuous
version, which is easier to solve. To validate the approach,
we then prove that the optimal solution to the approximat-
ing continuous problem provides an asymptotically optimal
solution to the original discrete problem.
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We first transform the discrete optimization problem into
a continuous one. Let

N��x�= �/�+ x
√

�/��

so that the variable x = �N − �/��/
√

�/� is the (normal-
ized) number of servers in excess of the minimum num-
ber �/� required for stability. In terms of x, we define

F��x� "= F �N��x��− F ��/���

G��x� "= �G�N��x�����

C��x� "=C�N��x����− F ��/���

���x� "=H�N��x���/���

with

H�M�*�=
{
*
∫ �

0
e−*tt�1+ t�M−1 dt

}−1
�

It can be verified (Jagers and Van Doorn 1986, 1991) that
���x� = ��N��x���/�� for integer values of N��x�. The
total cost per unit of time (up to the additive constant factor
F ��/��) can thus be rewritten

C��x�= F��x�+���x�G��x��

Denote

x∗
� "= argmin

x>0
C��x�� (9)

To see that x∗
� is well defined, first notice that the function

C��·� is strictly convex. This follows from the assump-
tion that F �·� is convex and the fact that ���·� is convex
(Jagers and Van Doorn 1986, 1991) and G��·� is strictly
convex (Appendix C). In addition, limx↓0C��x�=�, since
limN↓�/� G�N ��� =�. Also, limx→� C��x� =�, because
limN→� F �N� = �. Hence, C��·� is unimodal, implying
that it, indeed, achieves a unique minimum value at x∗

� ∈
�0���. Further, notice that either N ∗

� = 	N��x
∗
��
 or N ∗

� =
�N��x

∗
���, which establishes the link between the discrete

problem and the corresponding continuous problem. (Here
	u
 and �u� denote the largest integer smaller than or equal
to u, and the smallest integer larger than or equal to u,
respectively.) Next, we approximate x∗

� in (9) by

z∗� "= argmin
z>0

C�z� �F�� ���� �G� � (10)

where

C�z� �F�� ���� �G� "= �F��z�+ ����z� �G��z��

with the functions �F��·�, ����·�, �G��·� “approximating”
F��·�, ���·�, G��·�, respectively. (Note that with this nota-
tion, x∗

� = argminx>0C�x�F�����G� .) The approximating

functions �F��·�, �G��·�, and ����·� that we consider will
always be such that z∗� exists and is unique. If �F��·�, �G��·�,
����·� have a simple form, then solving for z∗� will be easier
than determining x∗

�. At the same time, if �F��·�, �G��·�, and
����·� approximate F��·�, G��·�, and ���·� well, then it is
reasonable to expect that z∗� provides a good approximation
to x∗

� and, moreover, N��z
∗
�� yields a good approximation

to N ∗
� .

Before formalizing the above approximation principle,
we introduce the following notational conventions: For any
pair of functions a� and b� (implicitly assuming existence
of the limits), denote

a�

�∼ b� " lim
�→�

a�

b�

= 1� a�

�≈ b� " lim
�→�

a�

b�

= .�

0< . <��

a�

�� b� " lim
�→�

a�

b�

= 0� a�

�� b� " lim
�→�

a�

b�

=��

a�

sup
� b� " lim sup

�→�

a�

b�

� 1� a�

inf
� b� " lim inf

�→�
a�

b�

� 1�

a�

inf
< b� " lim inf

�→�
a�

b�

< 1� a�

sup
> b� " lim sup

�→�

a�

b�

> 1�

a�

inf� b� " lim inf
�→�

a�

b�

= 0� a�

sup� b� " lim sup
�→�

a�

b�

=��

Lemma 4.1. Denote �C��z� = C�z� �F�� ���� �G� . Then
C��z

∗
��

�∼ C��x
∗
�� if both C��x

∗
��

�∼ �C��x
∗
�� and C��z

∗
��

�∼
�C��z

∗
��.

Proof. By definition of x∗
�, C��z

∗
���C��x

∗
��, so it suffices

to show that C��z
∗
��

sup
� C��x

∗
��, which follows directly from

C��z
∗
��

�∼ �C��z
∗
��� �C��x

∗
��

�∼C��x
∗
��� �

Define

S��x� "=minC�	N��x�
����C��N��x������� (11)

Lemma 4.2. If C��z
∗
��

�∼ C��x
∗
��, then S��z

∗
��− F ��/��

�∼
C�N ∗

� ���− F ��/��.

Proof. By definition, S��z
∗
�� � C�N ∗

� ���, so it suffices to
show that

S��z
∗
��− F ��/��

sup
� C�N ∗

� ���− F ��/���

For fixed �, we distinguish between four cases.
(i) N ∗

� − 1 < N��z
∗
�� � N ∗

� . Then �N��z
∗
��� = N ∗

� , and
S��z

∗
��=C�N ∗

� ���.
(ii) N ∗

� � N��z
∗
�� < N ∗

� + 1. Then 	N��z
∗
��
 = N ∗

� , and
S��z

∗
��=C�N ∗

� ���.
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(iii) N��z
∗
���N ∗

� − 1. Then
z∗� �

�N��z
∗
���−�/�√
�/�

�
N ∗

� − 1−�/�√
�/�

�
	N��x

∗
��
−�/�√
�/�

� x∗
��

so that

S��z
∗
��− F ��/���C��N��z

∗
������− F ��/��

=C�

(�N��z
∗
���−�/�√
�/�

)
�C��z

∗
��

because of the unimodality of C��·�.
(iv) N��z

∗
���N ∗

� + 1. Then
z∗� �

	N��z
∗
��
−�/�√
�/�

�
N ∗

� + 1−�/�√
�/�

�
�N��x

∗
���−�/�√
�/�

� x∗
��

so that

S��z
∗
��− F ��/���C�	N��z

∗
��
���− F ��/��

=C�

(	N��z
∗
��
−�/�√
�/�

)
�C��z

∗
���

Thus, for all �,

S��z
∗
��− F ��/���maxC�N ∗

� ���− F ��/���C��z
∗
���

�∼maxC�N ∗
� ���− F ��/���C��x

∗
���

=C�N ∗
� ���− F ��/��� �

Combining Lemmas 4.1 and 4.2, we obtain the funda-
mental approximation principle underlying our approach:

Corollary 4.3 (Asymptotic Optimality). Denote
�C��z� = C�z� �F�� ���� �G� . Let x∗

� and z∗� be as in (9)
and (10), respectively. If C��x

∗
��

�∼ �C��x
∗
�� and C��z

∗
��

�∼
�C��z

∗
��, then the staffing function z∗� is asymptotically

optimal in the sense that, as �→�,
S��z

∗
��− F ��/��

�∼C�N ∗
� ���− F ��/���

with S��x� given in (11).

Note that the quantities S��z
∗
��−F ��/�� and C�N ∗

� ���−
F ��/�� may be interpreted as the total cost in excess of
the minimum required staffing cost F ��/�� for the approx-
imately optimal staffing level N��z

∗
�� and for the truly opti-

mal level N ∗
� , respectively. The above corollary identifies

conditions under which these two quantities are asymp-
totically equal, implying that the approximate solution is
asymptotically optimal in a certain sense.
In the next sections, we identify “simple” functions �F��·�,�G��·�, and ����·�, such that F��x

∗
��

�∼ �F��x
∗
�� and F��z

∗
��

�∼
�F��z

∗
��, G��x

∗
��

�∼ �G��x
∗
�� and G��z

∗
��

�∼ �G��z
∗
��, ���x

∗
��

�∼
����x

∗
�� and ���z

∗
��

�∼ ����z
∗
��. This implies C��x

∗
��

�∼
�C��x

∗
�� and C��z

∗
��

�∼ �C��z
∗
�� as required in the above corol-

lary, which then enables us to gain insight into the behavior
of N ∗

� , as a function of �.

5. Some Special Functions
In this section, we introduce some functions that will play
a central role in our analysis.
For any x > 0, define

P�x� "= 1
1+ �x/h�−x��

� (12)

where h�·� is the “hazard rate” function of the standard
normal distribution, namely

h�x� "= ��x�

1−��x�
�

with

��x�= 1√
2�
e−x2/2� ��x�=

∫ x

−�
��y�dy�

In Lemma B.1 we prove that P�·� is strictly convex
decreasing.
Also define

Q��x� "= expN��x��1− r��x�+ log r��x� �√
2�N��x��1− r��x��

�

with

r��x� "= �/�

N��x�
�

and let

Q�x� "= ��x�

x
= e−x2/2

x
√
2�

� (13)

The following two lemmas characterize the asymptotic
behavior of ���·�, as �→�.
Lemma 5.1 (Halfin and Whitt 1981). For any function
x� with lim sup�→� x� <�,
���x��

�∼ P�x���

If, moreover, lim�→� x� = x, then ���x��
�∼ P�x�, x � 0.

In particular, if lim�→� x� = 0, then ���x��
�∼ 1.

Proof. Suppose to the contrary. Then there must be a sub-
sequence �n� with limn→� �n =� such that limn→� x�n

=
1 and limn→� ��n

�x�n
� = *, where 0 < 1 < � and * �=

P�1�. This is in contradiction with Proposition 1 of Halfin
and Whitt (1981), which asserts that *= P�1� must prevail
for such a sequence �n�. �

Lemma 5.2 (Appendix A). For any function x� with
lim�→� x� =�,
���x��

�∼Q��x���

If also x�

sup
� �1/6, then

���x��
�∼Q�x���

If specifically x� = 2
√

�/� for some constant 2 > 0, then

���x��
�∼ 1

2
√
2��/��1+2�

(
e2

�1+2�1+2

)�/�

�
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We conclude the section with some observations on the
behavior of the functions F��·�, G��·�, and ���·�, as defined
at the outset of §4.
Recall that the staffing cost function F �·� is convex

increasing, which implies that the function F��·� is con-
vex increasing as well. In addition, F��0� = 0. Hence,
F��x�/F��y�� x/y for any pair of numbers x � y. Thus,

a�

sup
> b� =⇒ F��a��

sup
> F��b��� (14)

and

a�

sup� b� =⇒ F��a��
sup� F��b��� (15)

Also, from Lemmas 5.1 and B.1, for fixed b � 0,

a�

inf
< b =⇒ P�a��

sup
> P�b�� ���a��

sup
> ���b�� (16)

a�

sup
> b =⇒ P�a��

inf
< P�b�� ���a��

inf
< ���b�� (17)

and noting that limx→� ���x�= 0,

a�

sup� b =⇒ P�a��
inf� P�b�����a��

inf����b�� (18)

6. Case I: Rationalized Regime
In this section, we consider what we call a rationalized
scenario, by which we mean that, for some 2 > 0,

F��2�
�≈G��2�� (19)

or in words, the staffing cost F��·� is comparable to the
waiting cost G��·�, as �→�.
For any � > 0, define

y∗
� "= argmin

y>0
C�y�F��P�G� � (20)

with P�·� as in (12).
Theorem 6.1. The staffing function y∗

� is asymptotically
optimal in the sense of Corollary 4.3.

Proof. The idea of the proof may be described as follows.
In order for Corollary 4.3 to apply, we need to show that the
function P�·� is an asymptotically exact approximation for
the function ���·� around the points x∗

� and y∗
�. In view of

Lemma 5.1, it suffices to show that lim sup�→� x∗
� <� and

lim sup�→� y∗
� <�. We prove this by contradiction, arguing

that if this were not the case, then just the staffing cost
alone would be overwhelmingly larger than the total cost
associated with the fixed staffing function 2, contradicting
the supposed optimality of x∗

� or y∗
�.

We start with showing that lim sup�→� x∗
� <�. Suppose

to the contrary. Then x∗
�

sup� 2, so that

F��x
∗
��

sup� F��2�

from (15). Using (19),

F��2�
�≈ F��2�+G��2�� F��2�+���2�G��2�=C��2��

By definition,

C��x
∗
��� F��x

∗
���

Combining the above relations, we deduce

C��x
∗
��

sup�C��2��

contradicting the optimality of x∗
�. Thus, lim sup�→� x∗

� <
�. By similar arguments, lim sup�→� y∗

� <�.
Hence, according to Lemma 5.1, ���x

∗
��

�∼ ����x
∗
�� =

P�x∗
�� and ���y

∗
��

�∼ ����y
∗
�� = P�y∗

��. Applying Corol-
lary 4.3 then completes the proof. �

Proposition 6.2. Assume that there exist functions f �·�,
g�·�, and H� such that, for any function k� > 0,

F��k��
�∼ f �k��H�� (21)

and

G��k��
�∼ g�k��H�� (22)

so certainly F��2�
�≈G��2� for all 2 > 0.

Define

y∗ = argmin
y>0

C�y� f �P� g �

The staffing function y∗ is then asymptotically optimal in
the sense of Corollary 4.3.

Proof. Similar to that of Theorem 6.1. Note that F��x
∗
��

�∼
�F��x

∗
�� = f �x∗

��H�, F��y
∗�

�∼ �F��y
∗� = f �y∗�H�, G��x

∗
��

�∼
�G��x

∗
��= g�x∗

��H�, and G��y
∗�

�∼ �G��y
∗�= g�y∗�H�. �

Example 6.3. Assume there is a staffing cost c� per server
per time unit, and a waiting cost a� per customer per
time unit, as well as a fixed penalty cost b� when the
waiting time exceeds d� time units, i.e., F �N� "= Nc�

and D��t� = a�t + b� It>d��, so that G�N��� = a�/�N�−
�� + b� e

−�N�−��d� . Thus F��2� = c�2
√

�/� and G��2� =
a�

√
�/�/2+ b��e

−�2d�

√
�/�.

(i) First, suppose that a�

�∼ a, b�

√
� e−�2d�

√
�/�

�� 1,
and c�

�∼ c. Then (21)–(22) are satisfied for f �2� = c2,
g�2�= a/2, and H� =

√
�/�. Proposition 6.2 says that the

staffing function

y∗ = argmin
y>0

{
cy+ aP�y�

y

}
(23)

is asymptotically optimal in the sense of Corollary 4.3. This
is exactly the y∗�a/c� that appears in (1). The numerical
search for y∗ is straightforward, since the function that it
minimizes is unimodal. It is important enough for our pur-
poses, as demonstrated in §2, that we plotted it in Figures 1
and 2.
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(ii) Now, suppose that a�

�� 1, b�

�∼ b/
√

�, c�

�∼ c, and
d�

�∼ d/
√

� with bd� > c. Then (21)–(22) are satisfied
for f �2� = c2, g�2�= b

√
� e−d2

√
�, and H� =

√
�/�. The

asymptotically optimal staffing function is

y∗ = argmin
y>0

{
cy+ bP�y�

√
� e−dy

√
�
}
�

(iii) Finally, consider the “combined” case where all
costs show up in the limit, i.e., suppose that a�

�∼ a, b�

�∼
b/

√
�, c�

�∼ c, and d�

�∼ d/
√

�. Then (21)–(22) are satis-
fied for f �2�= c2, g�2�= �a/2�+b

√
� e−d2

√
�, and H� =√

�/�. The asymptotically optimal staffing function is

y∗ = argmin
y>0

{
cy+P�y�

[
a

y
+ b

√
� e−dy

√
�

]}
�

Remark 6.4 (Asymptotic Expansions for y∗�·�). Two
asymptotic expansions for y∗�r� were quoted in §2, one
for small r and the other for large. To derive the for-
mer, one simply replaces P�y� in (23) by P�0�+ yP ′�0�+
�1/2�y2P ′′�0�, then uses the values for the derivatives from
Appendix B, and finally minimizes the resulting simple
function. (This yields y∗�r�, but with �/2 instead of the
presently used

√
�/2. Empirically, the former was found to

be more accurate near the origin, say r � 0�5, but the latter
is a better approximantion over the range 0� r � 10.)
As for large values, one uses the well-known approxi-

mation 1−��y�≈��y�/y to get that also P�y�≈��y�/y.
Substituting this approximation for P�y� into (23) identifies
y∗ as the solution y of yey2/2 = �a/

√
2��.

Changing variables to x = y2, then squaring, gives
x�t�ex�t� = t, where t = �a2/2��. A complete asymptotic
expansion of x�t�, for large t, is calculated in De Bruijn
(1981, pp. 25–28). This would yield the formula quoted
in the Introduction, but with s = ln�r/

√
2��. Again, it

was found empirically that s = ln�r/√�� provides a better
approximation for 20� r � 500.

7. Case II: Efficiency-Driven Regime
In this section, we consider an efficiency-driven scenario,
meaning that, for all 2 > 0,

F��2�
��G��2�� (24)

(lim sup�→��G��2�/F��2�� < � is actually sufficient) or
in words, the staffing cost dominates the waiting cost, as
�→�.
For any � > 0, define

y∗
� "= argmin

y>0
C�y�F��1�G� � (25)

Theorem 7.1. The staffing level y∗
� is asymptotically opti-

mal in the sense of Corollary 4.3.

Proof. The idea of the proof is largely similar to that of
Theorem 6.1. We start with showing that lim�→� x∗

� = 0.
Suppose to the contrary. Then x∗

�

sup
> u for some u > 0, so

that F��x
∗
��

sup
> F��u� from (14). Using (24), F��u�

�∼ F��u�+
G��u�� F��u�+���u�G��u�=C��u�.
Combining the above relations, we obtain C��x

∗
�� �

F��x
∗
��

sup
> C��u�, contradicting the optimality of x∗

�. Thus,
lim�→� x∗

� = 0. By similar arguments, lim�→� y∗
� = 0.

Hence, according to Lemma 5.1, ���x
∗
��

�∼ ����x
∗
�� =

P�x∗
��

�∼ 1, and ���y
∗
��

�∼ ����y
∗
��= P�y∗

��
�∼ 1.

Applying Corollary 4.3 then completes the proof. �

Proposition 7.2. Assume that there exist functions f �·�,
g�·�, H�, and J� such that, for any function k� > 0,

F��k��
�∼ f �k��H�� (26)

and

G��k��
�∼ g�k��H�J�� (27)

with J�

�� 1, so certainly F��2�
��G��2� for all 2 > 0.

Define y∗
� = argminy>0C�y� f �1� gJ� . Assume that f �·�

is convex increasing and that g�·� is strictly convex decreas-
ing, with limx↓0 g�x�=� so that y∗

� exists and is unique.
The staffing function y∗

� is then asymptotically optimal in
the sense of Corollary 4.3.

Proof. Similar to that of Theorem 7.1. Note that F��x
∗
��

�∼
�F��x

∗
�� = f �x∗

��H�, F��y
∗
��

�∼ �F��y
∗
�� = f �y∗

��H�, G��x
∗
��

�∼
�G��x

∗
�� = g�x∗

��H�J�, and G��y
∗
��

�∼ �G��y
∗
�� = g�y∗

��·
H�J�. �

Remark 7.3. The rationalized staffing function (20) is, in
fact, also asymptotically optimal in the efficiency-driven
regime as defined by (24). However, the staffing func-
tion (25), where P�·� is replaced by 1, is asymptotically
optimal as well, while considerably simpler.

Example 7.4. Consider the same cost structure as in
Example 6.3. Now, however, suppose that a�

�∼ aJ�, b�

�∼
bJ�/

√
�, c�

�∼ c, d�

�∼ d/
√

�, and J�

�� 1. Then (26)–(27)
are satisfied for f �2� = c2, g�2� = �a/2� + b

√
� e−d2

√
�,

and H� = √
�/�. The asymptotically optimal staffing

function is

y∗
� = argmin

y>0

{
cy+

[
a

y
+ b

√
�e−dy

√
�

]
J�

}
�

In the special case where the nonlinear penalty cost
is asymptotically negligible, i.e., “b = 0” (or rather

b�

√
� e−�2d�

√
�/�

�� J��, the optimal staffing function
reduces to

y∗
� = argmin

y>0

{
cy+ a

y
J�

}
�

Note that the extreme case where the linear waiting cost is

asymptotically vanishing, i.e., “a= 0” (formally, a�

�� J�),
does not make sense, since lim2↓0 g�2�= b

√
� <�. Thus,

the optimization problem will not have a strictly positive
solution for large �.
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8. Case III: Quality-Driven Regime
In this section, we consider a quality-driven regime, mean-
ing that, for all 2 > 0,

F��2�
��G��2�� (28)

or in words, the staffing cost is negligible compared to the
waiting cost, as �→�.
For any � > 0, define y∗

� "= argminy>0C�y�F��Q��G� .

Theorem 8.1. The staffing function y∗
� is asymptotically

optimal in the sense of Corollary 4.3.

Proof. The idea of the proof is largely similar to that of
Theorem 6.1. However, now we rely on Lemma 5.2, which
indicates that the function Q��·� is an asymptotically exact
approximation for the function ���·� around the points x∗

�

and y∗
�, provided lim�→� x∗

� =� and lim�→� y∗
� =�. This

may be shown again by contradiction, verifying that if this
were not the case then just the waiting cost alone would
now be larger than the total cost associated with some fixed
staffing function u.
We start with showing that lim�→� x∗

� = �. Suppose
to the contrary. Then x∗

�

inf
< u for some u > 0, so that

���x
∗
��G��x

∗
��

sup
> ���u�G��u� from (16) and the fact that

G��·� is decreasing. Using Lemma 5.2 and (28),

���u�G��u�
�∼ P�u�G��u�

�∼ F��u�+P�u�G��u�

�∼ F��u�+���u�G��u�=C��u��

Combining the above relations, we deduce that
C��x

∗
�� � ��G��x

∗
��

sup
> C��u�� contradicting the optimal-

ity of x∗
�. Thus, lim�→� x∗

� = �. By similar arguments,
lim�→� y∗

� =�.
Hence, according to Lemma 5.2, ���x

∗
��

�∼ ����y
∗
�� =

Q��x
∗
��, and ���y

∗
��

�∼ ����y
∗
��=Q��y

∗
��.

Applying Corollary 4.3 then completes the proof. �

Proposition 8.2. Assume that there exist functions f �·�,
g�·�, H�, and J� such that, for any function k� > 0,

F��k��
�∼ f �k��H� (29)

and

G��k��
�∼ g�k��H�J�� (30)

with J�

�� 1, and g��*�J�Q��*�
�� f ��*� for some * <

1/6, so that certainly F��2�
��G��2� for all 2 > 0.

Define

y∗
� = argmin

y>0
C�y� f �Q�gJ� � (31)

The staffing function y∗
� is then asymptotically optimal in

the sense of Corollary 4.3.

Proof. In a similar fashion as in the proof of Theorem 8.1,
it may be shown that lim�→� x∗

� =� and lim�→� y∗
� =�.

However, to show that the function Q�·� is an asymptot-
ically exact approximation for the function ���·� (using
Lemma 5.2), we need to prove, additionally, that x∗

� and y∗
�

do not grow faster than �*.

We start with showing that x∗
�

sup
� �*. Suppose to the con-

trary. Then, x∗
�

sup
> �*, so that F��x

∗
��

sup
> F���

*� from (14).
Using Lemma 5.2 and (29), (30),

F���
*�

�∼ F���
*�+Q��*�G���

*�

�∼ F���
*�+����

*�G���
*�=C���

*��

Combining the above relations, we obtain C��x
∗
�� �

F��x
∗
��

sup
> C���

*�, contradicting the optimality of x∗
�. Thus,

x∗
�

sup
� �*. By similar arguments, y∗

�

sup
� �*. Hence, according

to Lemma 5.2, ���x
∗
��

�∼ ����x
∗
�� = Q�x∗

��, and ���y
∗
��

�∼
����y

∗
�� = Q�y∗

��. Applying Corollary 4.3 then completes
the proof. Note that F��x

∗
��

�∼ �F��x
∗
��= f �x∗

��H�, F��y
∗
��

�∼
�F��y

∗
�� = f �y∗

��H�, G��x
∗
��

�∼ �G��x
∗
�� = g�x∗

��H�J�, and
G��y

∗
��

�∼ �G��y
∗
��= g�y∗

��H�J�. �

Remark 8.3. The rationalized staffing function (20) is,
in fact, also asymptotically optimal in the quality-driven

regime as defined by (28) when x∗
�

�� �1/6, since the
proof of Proposition 8.2 then shows that ���x

∗
��

�∼ Q�x∗
��,

while Q�x∗
��

�∼ P�x∗
��. However, the staffing function (31)

is asymptotically optimal as well, while simpler.

Example 8.4. Consider the same cost structure as in
Example 6.3. Now suppose, however, that a�

�∼ aJ�, b�

�∼
bJ�/

√
�, c�

�∼ c, and d�

�∼ d/
√

�, with J�

�� 1. Then
(29)–(30) are satisfied for f �2� = c2, g�2� = �a/2� +
b
√

�e−d2
√

�, and H� =
√

�/�. The asymptotically optimal
staffing function is

y∗
� = argmin

y>0

{
cy+Q�y�

[
a

y
+ b

√
�e−dy

√
�

]
J�

}
�

In the special case where the nonlinear penalty cost
is asymptotically negligible, i.e., “b = 0” (or rather,

b�

√
� e−�2d�

√
�/�

�� J��, the optimal staffing functions
reduces to

y∗
� = argmin

y>0

{
cy+ aQ�y�

y
J�

}
�

In the extreme case where the linear waiting costs
are asymptotically insignificant, i.e., “a = 0” (formally,

a�

�� J�), the optimal staffing function takes the form

y∗
� = argmin

y>0

{
cy+ bQ�y�

√
�e−dy

√
�J�

}
�
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9. Constraint Satisfaction
In the previous sections, we considered the problem of
determining the staffing level to minimize the total staffing
and waiting cost. A closely related problem, which is in
fact motivated by actual practice, is to minimize the staffing
level subject to a constraint M� > 0 on the waiting cost.
We are now interested in determining

N ∗
� "= min

N>�/�
N " K�N ����M��� (32)

with K�N��� "= ���N��/��G�N��� denoting the wait-
ing cost. Notice that limN→� K�N��� = 0, so N ∗

� is well
defined.
As for the cost minimization problem, our approach

is first to translate the discrete problem (32) into a con-
tinuous one, and then approximate the latter problem by
a related continuous problem, which is easier to solve.
Denote x∗

� "= minx>0x " K��x� � M��, with K��x� "=
���x�G��x�. Since ���·� and G��·� are both continuous
and strictly decreasing, x∗

� is the unique solution to the
equation K��x� = M�. Further, notice that N ∗

� = �N��x
∗
���,

which establishes the link between the discrete problem and
the corresponding continuous problem.
To approximate x∗

�, define z∗� as the solution to the equa-
tion ����z� �G��z� = M�. The functions ����·� and �G��·�
that we consider will always be such that z∗� exists and
is unique. We now formulate the approximation principle
underlying our approach, in parallel to that for the cost
minimization problem.
Define

T��x� "=min�K�	N��x�
���−M����K��N��x�����−M���
�K��N��x�����−K�N ∗

� ������ (33)

Lemma 9.1 (Asymptotic Optimality). Denote �K��y� =
����y� �G��y�. Let z∗� be as defined above. If K��z

∗
��

�∼
�K��z

∗
��, then the staffing function z∗� is asymptotically opti-

mal in the sense that, as �→�, T��z
∗
��

��M�, with T��·�
given in (33).

Proof. For fixed �, we distinguish between three cases.
(i) N ∗

� − 1< N��z
∗
���N ∗

� . Then �N��z
∗
��� =N ∗

� , so that
T��z

∗
��= 0.

(ii) N��z
∗
�� � N ∗

� − 1. Then M� = K��x
∗
�� � K�N ∗

� −
1��� � K��N��z

∗
������ � K��z

∗
��, so that T��z

∗
�� �

�K��N��z
∗
������−M���K��z

∗
��−M�.

(iii) N��z
∗
�� > N ∗

� . Then K��z
∗
�� � K�	N��z

∗
��
��� �

K�N ∗
� ����K��x

∗
��=M�, so that T��z

∗
�� �

�K�	N��z
∗
��
���−M���M� −K��z

∗
��.

Thus, for all �, T��z
∗
��� �K��z

∗
��−M��

��M�, as �K��z
∗
��=

M� by definition. �

In full generality, it seems difficult to establish a
stronger optimality property than indicated in the above
lemma. Under additional conditions, however, it is pos-
sible to make sharper statements. For example, a more

desirable criterion for asymptotic optimality would be

�K��N��z
∗
������−K�N ∗

� ���� ��M�. And indeed, following
the same reasoning as the proof of Lemma 9.1, it can be
guaranteed to hold but under additional constraints on the
oscillation of our costs.

9.1. Rationalized Regime

We first consider a rationalized scenario, by which we mean
that, for some 2 > 0,

G��2�
�≈M�� (34)

(lim sup�→��G��2�/M�� < � is actually sufficient) or in
words, the waiting cost G��·� is comparable to the con-
straint M�, as �→�.
For any � > 0, define y∗

� as the solution to the equation
P�y�G��y� = M�. Note that P�·� and G��·� are both con-
tinuous and strictly decreasing with limx↓0 P�x�G��x�=�
and limx→� P�x�G��x�= 0, so that y∗

� exists and is unique.

Theorem 9.2. The staffing function y∗
� is asymptotically

optimal in the sense of Lemma 9.1.

Proof. The idea of the proof may be described as follows.
In order for Lemma 9.1 to apply, we need to show that the
function P�·� is asymptotically close to the function ���·�
around y∗

�. In view of Lemma 5.1, it suffices to show that
lim sup�→� y∗

� <�. We prove this by contradiction, arguing
that if this were not the case, then the incurred waiting cost
would be strictly smaller than the constraint value M�.
We start with showing that lim sup�→� y∗

� < �. Sup-
pose to the contrary. Then y∗

�

sup� 2, so that P�y∗
��G��y

∗
��

inf�
P�2�G��2� from (18) and the fact that G��·� is decreasing.
Using (34), P�2�G��2��G��2�

�≈M�.
Combining the above relations, we deduce P�y∗

�� ×
G��y

∗
��

inf� M�, contradicting the definition of y∗
�. Thus,

lim sup�→� y∗
� < �. Hence, according to Lemma 5.1,

���y
∗
��

�∼ ����y
∗
��= P�y∗

��. Applying Lemma 9.1 then com-
pletes the proof. �

Proposition 9.3. Assume that there exists a function g�·�,
such that, for any function k� > 0,

G��2�
�∼ g�2�M�� (35)

so certainly G��2�
�≈M� for all 2 > 0. Define y∗ as the

solution to the equation P�y�g�y� = 1. Assume that g�·�
is continuous and decreasing, with limx↓0 g�x� > 1 so that
y∗ exists and is unique. The staffing function y∗ is then
asymptotically optimal in the sense of Lemma 9.1.

Proof. Similar to that of Theorem 9.2. Note that G��y
∗�

�∼
�G��y

∗�= g�y∗�M�. �

Example 9.4. Assume there is a waiting cost a� per cus-
tomer per time unit, as well as a fixed penalty cost b� when
the waiting time exceeds d� time units, i.e., D��t�= a�t+
b� It>d��, so that G�N��� = a�/�N�−�� + b�e

−�N�−��d� .

Thus G��2�= a�

√
�/�/2+ b��e

−�2d�

√
�/�.
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(i) First, suppose that a�

�∼ a
√

�/�, b� e
−�2d�

√
�/�

�� 1,
and M� = M�. Then, (35) is satisfied for g�2� = a/2�M .
Proposition 9.3 says that the staffing function y∗ determined
as the unique solution to the equation aP�y�/�y = M is
asymptotically optimal in the sense of Lemma 9.1.

(ii) Now, suppose that a�/
√

�
�� 1, b�

�∼ b, d�

�∼
d/

√
�, and M� = M� with b > M . Then, (35) is satis-

fied for g�2�= b e−d2
√

�/M . The asymptotically optimal
staffing function is the unique solution to the equation
bP�y�e−dy

√
� =M .

(iii) Finally, consider the “combined” case where all
costs show up in the limit, i.e., suppose that a�

�∼ a
√

�/�,
b�

�∼ b, d�

�∼ d/
√

�, and M� =M�. Then, (35) is satisfied
for g�2�= a/2�M+b e−d2

√
�/M . The asymptotically opti-

mal staffing function is the unique solution to the equation
P�y��a/�y+ be−dy

√
� =M .

Example 9.5. An important special case is a� = 0, b� =
1, d� = 0, M� = !�, which corresponds to a target wait-
ing probability !. Case (ii) of the above example then
shows that the staffing function y∗ = P−1�!� is asymptot-
ically optimal. We described this example in §2—see (5).
It is to be compared with (6), used in Whitt (1992) and
Kolesar and Green (1998). On the differences and similar-
ities between the two approximations, see §10.

9.2. Efficiency-Driven Regime

We now consider an efficiency-driven scenario, meaning
that, for all 2 > 0,

G��2�
��M�� (36)

(in fact G��2�
sup
� M� would be sufficient for the results

below to hold) or in words, the waiting cost is dominated by
the target upper bound, as �→�. For any � > 0, define y∗

�

as the solution to the equation G��y�=M�. Note that G��·�
is continuous and strictly decreasing with limx↓0G��x� =
� and limx→� G��x�= 0, so that y∗

� exists and is unique.

Theorem 9.6. The staffing function y∗
� is asymptotically

optimal in the sense of Lemma 9.1.

Proof. The idea of the proof is largely similar to that of
Theorem 9.2. We start with showing that lim�→� y∗

� = 0.
Suppose to the contrary. Then y∗

�

sup
> u for some u > 0, so

that P�y∗
��G��y

∗
��

inf
< P�u�G��u�, from (17) and the fact that

G��·� is decreasing. Using (36), P�u�G��u��G��u�
sup
� M�.

Combining the above relations, we deduce P�y∗
��×

G��y
∗
��

inf
< M�, contradicting the definition of y∗

�. Thus,
lim�→� y∗

� = 0. Hence, according to Lemma 5.1, ���y
∗
��

�∼
����y

∗
�� = P�y∗

��
�∼ 1. Applying Lemma 9.1 then completes

the proof. �

Proposition 9.7. Assume that there exist functions g�·�
and J� such that, for any function k� > 0,

G��k��
�∼ g�k��J�M�� (37)

with J�

�� 1, so certainly G��2�
�� M� for all 2 > 0.

Define y∗
� as the unique solution to the equation g�y�J� = 1.

Assume that g�·� is continuous and strictly decreasing, with
limx↓0 g�x�=� so that y∗

� exists and is unique. The staffing
function y∗

� is then asymptotically optimal in the sense of
Lemma 9.1.

Proof. Similar to that of Theorem 9.6. Note that G��y
∗
��

�∼
g�y∗

��J�M�. �

Example 9.8. Consider the same cost structure as in
Example 9.4. Now suppose, however, that a�

�∼ a
√

�/�,

b�

�∼ b, d�

�∼ d/
√

�, and M� =M�/J�, with J�

�� 1. Then,
(37) is satisfied for g�2� = a/2�M + be−d2

√
�/M . The

asymptotically optimal staffing function is the unique solu-
tion to the equation �a/�y+ be−dy

√
� J� =M .

In the special case where the nonlinear penalty cost
is asymptotically negligible, i.e., “b = 0” (or rather

b�e
−�2d�

√
�/�

�� 1), the equation for the optimal staffing
function reduces to y∗

� = �a/�M�J�.
As noted earlier for the optimization problem, the

extreme case where the linear waiting cost is asymptoti-

cally vanishing, i.e., “a = 0” (formally, a�

√
�

�� 1) does
not make sense, since lim2↓0 g�2� = b/M < �. Thus, the
equation for the optimal staffing function will not have a
positive solution for large �.

9.3. Quality-Driven Regime

We finally consider a quality-driven scenario, meaning that,
for all 2 > 0,

G��2�
��M�� (38)

or in words, the waiting cost dominates the target upper
bound, as � → �. For any � > 0, define y∗

� as the solu-
tion to the equation G��y�Q��y� = M�. Note that G��·�
and Q��·� are continuous and strictly decreasing with
limx↓0G��x�Q��x� = � and limx→� G��x�Q��x� = 0, so
that y∗

� exists and is unique.

Theorem 9.9. The staffing function y∗
� is asymptotically

optimal in the sense of Lemma 9.1.

Proof. The proof is largely similar to that of Theorem 9.2.
However, now we rely on Lemma 5.2, which indicates that
the function Q��·� is asymptotically close to the function
���·�, provided lim�→� y∗

� =�. This may be shown again
by contradiction, verifying that if this were not the case,
then the incurred waiting cost would now strictly exceed
the constraint value M�.
We start with showing that lim�→� y∗

� = �. Sup-
pose to the contrary. Then y∗

�

inf
< u for some u > 0, so

that P�y∗
��G��y

∗
��

sup
> P�u�G��u� from (16) and the fact

that G��·� is decreasing. Using Lemma 5.2 and (38),

P�u�G��u�
�∼ P�u�G��u�

��M�.
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Table 2. Overview of the parameter settings for the numerical experiments.

�= 1� c� = c = 1
Example 6.3

i ii iii
Example 7.4 Example 8.4

�= 100 a= 2 �= 100, d = 0�1 b = 5, d = 1 a= 2, b = 2�5, d = 0�1 a= 1, b� = 0 a= 1, b� = 0
a � b � � � �

0�1 5 0�1 5 5 10 10
0�25 6 0�25 6 6 20 20
0�5 7 0�5 7 7 30 30

1
��� 1

���
���

���
���

2
��� 2

���
���

���
���

4 99 4 99 99 190 190
10 100 10 100 100 200 200

Combining the above relations, we deduce
P�y∗

��G��y
∗
��

sup
> M�, contradicting the definition of y∗

�.
Thus, lim�→� y∗

� = �. Hence, according to Lemma 5.2,
���y

∗
��

�∼ ����y
∗
�� = Q��y

∗
��. Applying Lemma 9.1 then

completes the proof. �

Proposition 9.10. Assume that there exist functions g�·�
and J� such that, for any function k� > 0,

G��k��
�∼ g�k��J�M�� (39)

with J�

�� 1, and g��*�J�Q��*�
�� 1 for some * < 1/6,

so that certainly G��2�
�� M� for all 2 > 0. Define y∗

�

as the unique solution to the equation Q�y�g�y�J� = 1.
Assume that g�·� is continuous and strictly decreasing, with
limx↓0 g�x� > 0 so that y∗

� exists and is unique. The staffing
function y∗

� is then asymptotically optimal in the sense of
Lemma 9.1.

Proof. It may easily be shown that y∗
�

sup
� �*. Hence,

according to Lemma 5.2, ���y
∗
��

�∼ ����y
∗
�� = Q�y∗

��. The
proof is further similar to that of Theorem 9.9. Note that
G��y

∗
��

�∼ �G��y
∗
��= g�y∗

��M�J�. �

Example 9.11. Consider the same cost structure as in
Example 9.4. Now suppose, however, that a�

�∼ a
√

�/�,

b�

�∼ b, d�

�∼ d/
√

�, and M� =M�/J�, with J�

�� 1. Then,
(39) is satisfied for g�2� = a/2�M + be−d2

√
�/M . The

asymptotically optimal staffing function is the unique solu-
tion of the equation Q�y��a/�y+ be−dy

√
� J� =M .

In the special case where the nonlinear penalty cost
is asymptotically negligible, i.e., “b = 0” (or rather

b�e
−�2d�

√
�/�

�� 1), the equation for the optimal staffing
function reduces to �aQ�y�/�y�J� =M .
In the extreme case where the linear waiting cost is

asymptotically insignificant, i.e., “a = 0” (formally, a�

��√
�), the equation for the optimal staffing function takes

the form bQ�y�e−dy
√

�J� =M .

Remark 9.12. Notice that the results for the constraint sat-
isfaction problem closely mirror those for the cost min-
imization problem. In fact, the two problems may be
formally related as follows. Consider a strictly decreas-
ing function M�·� on �0��� with limx↓0M�x� = �
and limx→� M�x� = 0. Then the (unique) solution to
the equation M�x� = 1 is argminx>0M�x� + 1/M�x��.
Thus, the solution to the constraint satisfaction prob-
lem ���x�G��x� = M� may also be represented as
argminx>0M

2
�/���x�G��x�+���x�G��x��, which has the

form of the cost minimization problem. The relation thus
established is only formal. We could not utilize it to derive
the results for constraint satisfaction from the optimization
results.

10. Numerical Experiments
In this section, we present the results of some numeri-
cal experiments that we carried out. The main purpose
of the numerical experiments was to test the accuracy of
the approximations that arise from our asymptotically opti-
mal staffing levels. The numerical results indicate that the
rationalized approximation performs exceptionally well in
all regimes. By Remark 7.3 we know that the rational-
ized approximation is, in fact, asymptotically optimal in
all regimes. On the other hand, the accuracy displayed
by the rationalized approximation is astonishingly better
than our rigorous results lead us to believe. Our first two
experiments address Grassmann (1988) and Kolesar and
Green (1998), which correspond to Examples 6.3 and 9.5,
respectively.
Grassmann (1988, Table 3) calculates the optimal

staffing level N ∗ for the M/M/N queue, with offered loads
R= 1�3�10�30�100 and costs r = a/c = 10, 20, 100, 200.
While the latter are rather extreme values, our approxima-
tion (1) is nevertheless accurate: it is exact in 7 cases and
off by only 1 agent in the other 13 cases.
Kolesar and Green (1998, Table 1) use (6) to calcu-

late N ∗ that achieves PrWait > 0� = !, for ! = 0�2, 0�1,
0�05, 0�025, 0�01, 0�001, and offered loads R = 2m, m =



Borst, Mandelbaum, and Reiman: Dimensioning Large Call Centers
Operations Research 52(1), pp. 17–34, © 2004 INFORMS 31

Table 3. Overview of the “wrong-regime tests.”

�= 1, a= 1, b� = 0, c� = c = 1
Scaling a� Approximation Regime n∗ −�/� # Correct # Off by 1 # Off by 2

Efficiency a�−1/2 Rationalized y∗�a�−1/2�
√

�/� 19 1 0
Efficiency a�−1/2 Quality y∗

��a/��
√

�/� 2 14 4
Quality a

√
� Rationalized y∗�a

√
��
√

�/� 14 6 0
Quality a

√
� Efficiency

√
a/��3/4 Poor—overstaffing by 10%–15%

Rationalized a Quality y∗
��a/

√
��
√

�/� 8 12 0
Rationalized a Efficiency

√
a/�

√
� 3 8 9

0�1� � � � �10. The approximation (1) is superior to (6). This
is to be expected in view of the theory that supports the
former, while the latter is heuristically based. Indeed, for
! = 0�2, (1) is exact for 9 cases and misses by 1 agent
for the other 2. In contrast, (6) misses by up to 7 agents.
But more significantly, the misses in staffing levels lead to
misses in the target delay probabilities, off by 25%–75%
in 8 out of the 11 cases.
The approximation (6) improves as ! decreases, until

eventually it coincides with (1). This is understood as fol-
lows: small values of ! give rise to large y∗ (quality-driven),
for which ���y�≈��y�/y ≈ P�y�.
We now turn to numerical experiments related to Exam-

ples 6.3, 7.4, and 8.4. In all cases we compared an approx-
imation to the optimal staffing level obtained from the
asymptotics with the exact optimal staffing level, which
we obtained through a simple search procedure. (The uni-
modality of C�N��� in N makes such a search simple.)
In all the examples, we use c� = c = 1 and �= 1. Once

we set c� = c, taking c = 1 is without loss of generality
because we can take this as the definition of the monetary
unit. Similarly, taking � = 1 is also without loss of gen-
erality because we can take 1/� as the definition of the
time unit. The parameter settings for the experiments are
summarized in Table 2.
We first describe the numerical results related to Exam-

ple 6.3. We considered three cases:
(i) a� = a� b� = 0
(ii) a� = 0� b� = b/

√
�� d� = d/

√
�

(iii) a� = a� b� = b/
√

�� d� = d/
√

�.
These correspond to the three cases in Example 6.3. First
consider case (i). For r > 0, let

y∗�r�= argmin
y>0

{
y+ rP�y�

y

}
� (40)

We plot y∗�r�, 0� r � 10� in Figure 1.
Let n∗ = �/�+y∗�r�

√
�/�. The rationalized approxima-

tion for case (i) of Example 6.3 is obtained by rounding n∗

to the nearest integer. (The asymptotic analysis gives no
guidance on how to go from n∗ to an integer staffing level.
Preliminary numerical calculations comparing rounding up,
rounding down, and rounding off showed that rounding off
is generally superior. So all of our numerical results involve

rounding off. Of course, if rounding off n∗ yields a value
smaller than or equal to �/�, the staffing level must be
increased to be strictly greater �/� to avoid an unstable
system.)
To check this approximation we first tried � = 100 and

the seven different values of a indicated in Table 2. In all
these cases rounding off n∗ gave the exact optimal staffing
level. We next set a = 2 and tried all integer values of �
between 5 and 100. Here, rounding off n∗ is never off by
more than 1 agent, and is usually exact (83 out of 96 cases).
For case (ii) we let n∗ = �/� + y∗�b�d�

√
�/�, where

y∗�b�d�= argminy>0y+ bP�y�e−dy�.
Here, we first tried �= 100 and d = 0�1, with the seven

different values of b indicated in Table 2. Again, we found
that in all these cases rounding off n∗ gave the exact opti-
mal staffing level. Next, we set b = 5 and d = 1 and tried
all integer values between 5 and 100 for �. Rounding off n∗

is almost always exact (84 out of 96 times), and is never
off by more than 1.
For case (iii) we let n∗ = �/�+y∗�a� b�d�

√
�/�, where

y∗�a� b�d�= argminy>0y+P�y��a/y+ be−dy �.
Here, we set a = 2, b = 2�5, and d = 0�1, and tried

all integer values between 5 and 100 for � (see Table 2).
Again, rounding off n∗ is almost always exact (80 out of
96 cases), and is never off by more than 1.
For Example 7.4 we restricted our attention to b� = 0.

We initially set

a� = a�−1/2� (41)

Defining y∗
��a� = argminy>0y + a/�y

√
���, we can solve

explicitly to obtain y∗
��a� = √

a�−1/4. We thus let n∗ =
�/�+√

a/��1/4.
For the numerical test of this approximation we set a= 1

and tried all integer multiples of 10 between 10 and 200
for � (see Table 2), using (41) to determine a�. Rounding
off n∗ to the nearest integer is almost always exact (19 out
of 20 times), and is never off by more than 1.
In Example 8.4 we again restricted our attention to

b� = 0. We took
a� = a

√
�� (42)

Let n∗ = �/�+ y∗
��a�

√
�/�, where

y∗
��a�= argmin

y>0

{
y+ aQ�y�√

�
y

}
� (43)

and Q�y� is given by �13�.
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For the numerical test of this approximation, we again
set a = 1 and tried all integer multiples of 10 between 10
and 200 for � (see Table 2), using (42) to determine a�.
Once again, rounding off n∗ to the nearest integer is almost
always exact (16 out of the 20 times), and is never off by
more than 1.
The above tests were run under favorable conditions: The

asymptotic scaling of the parameters was known, and the
approximation used was that associated with the regime
corresponding to the parameter scaling. On the other hand,
the results of the test are astoundingly good: Rounding n∗

to the nearest integer is almost always exact, and is never
off by more than 1. Note that these tests include values
of � that do not appear to be very large.
It is clear that more numerical testing is in order. There

are two aims to this testing: (1) Find parameter values that
“break” the approximations, and (2) determine if any of the
asymptotic approximations is robust enough to work out-
side of its regime and/or determine rules of thumb for when
each approximation should be used. (Indeed, this last point
is central for obtaining a practically useful approximation.)
The additional testing takes the form of “wrong-regime”

testing. In all these tests we set c� = c = 1, �= 1, b� = 0,
and a= 1. We used all integer multiples of 10 between 10
and 200 for �. The results of these tests are summarized
in Table 3. The first “wrong-regime” test we conducted
involved scaling the parameters as in the efficiency-driven
regime with a� = a�−1/2, and using the approximation from
the rationalized regime. Thus, our approximation rounded
off n∗ = �/�+y∗�a�−1/2�

√
�/� to obtain the staffing level.

The approximation was exact in all but one case ��= 160�,
where it was off by 1.
Using the same parameters as in the preceding example,

we used the approximation from the quality-driven regime
(as if a� = a

√
�). Thus our approximation rounded off n∗ =

�/�+ y∗
��a/��

√
�/�, where y∗

� is given by (43), to obtain
the staffing level. The approximation was good, but not as
good as the rationalized regime: It was off by 1 in 14 cases
and off by 2 in 4 cases. We next scaled the parameters as
in the quality-driven regime with a� = a

√
�, and used the

approximation from the rationalized regime, rounding off
n∗ = �/�+ y∗�a

√
��
√

�/�, where y∗�·� is given by (40),
to obtain the staffing level. The approximation was off by 1
in 6 cases and exact in the others.
Using the same parameters as in the preceding exam-

ple, we used the approximation from the efficiency-
driven regime (as if a� = a�−1/2). Thus our approximation
rounded off n∗ = �/� + √

a/��3/4 to obtain the staffing
level. This approximation did not perform well, leading to
overstaffing of 10%–15%.
Next, we scaled the parameters as in the rationalized

regime, with a� = a, using the approximation from the
quality-driven regime (as if a� = a

√
�). Thus our approx-

imation rounded off n∗ = �/� + y∗
��a/

√
��
√

�/�, where
y∗

��·� is given by (43), to obtain the staffing level. The

approximation here was exact in 8 cases and off by 1 in
12 cases.
Using the same parameters as in the preceding exam-

ple, we used the approximation from the efficiency-
driven regime (as if a� = a�−1/2). Thus our approximation
rounded off n∗ = �/� + √

a/�
√

� to obtain the staffing
level. The approximation is not as good as that of the ratio-
nalized or quality-driven regime: 3 cases were exact, 8 were
off by 1, and 9 were off by 2.
In the tests above that involve scaling parameters for the

efficiency-driven and quality-driven regimes, we used a� =
a�−1/2 and a� = a

√
�, respectively. These regimes hold

more generally with a� = a�−* and a� = a�*, respectively,
for * > 0. In addition to * = 1/2, we also tried values
of * = 1/4 and 1. The runs for * = 1 involved multiples
of 50 from 50 to 1,000 for �. (The approximations used
the same value of * as used to scale the actual parameters.)
The results can be summarized as follows. The rational-
ized approximation was excellent: It was mostly exact, and
when it was wrong it was typically off by 1 and never
off by more than 3. The quality-driven approximation was
good, but not as good as the rationalized approximation.
(Even in the quality-driven regime!) The efficiency-driven
solution was the worst of the three, and substantially over-
staffed in the quality-driven regime. In the efficiency-driven
regime with * = 1, the efficiency-driven solution provided
the infeasible solution of � as the staffing level. Of course
this can be corrected by simply requiring that the staffing
level must be strictly greater than �.

11. Future Research
There are a few directions of research that suggest them-
selves. First, we would like to explain theoretically the
extreme accuracy of our approximations. This cannot be
anticipated from the corresponding asymptotic approxi-
mations. Next, the call center environment enjoys many
features that are not captured by the M/M/N (Erlang-C)
model. Important examples are customer abandonment,
time-varying arrival rates, nonexponential service times,
and multiple skill classes. The goal is to incorporate such
features into our framework, which we now elaborate on.
A justification of the square-root safety staffing princi-

ple has been pursued at three levels: heuristic, conceptual
and explicit. The heuristic level, as in Kolesar and Green
(1998), is based on an infinite-server approximation. The
conceptual level, as in Halfin and Whitt (1981), is founded
on a formal limit theorem, the limit taken as the number
of servers increases with the offered load in a precise man-
ner. These two levels motivate staffing levels of the form
N ≈ R+ y∗√R. The explicit level, as in the present work,
involves calculation of the constant y∗ as a function of
model parameters.
(i) For models with abandonment (Erlang-A perhaps

would be an appropriate term), the conceptual level was
analyzed in Garnett et al. (2002). Notably, abandonment
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renders the queue always stable, hence y∗ can also take neg-
ative values. The explicit level for Erlang-A is now under
study by the present authors.
(ii) The heuristic approach for time-varying arrival rates

proved successful in Jennings et al. (1996). The corre-
sponding conceptual level can be pursued within the service
network framework of Mandelbaum et al. (1998).
(iii) As for general service times, the M/G/N queue is

not amenable to exact analysis, and letting N → � does
not make things easier. Indeed, the accuracy of the stan-
dard multiserver approximations turns out questionable as
N becomes large, which is the relevant regime for call cen-
ters. A key challenge is the calculation of the Halfin-Whitt
delay function for the M/G/N queue. To this end, one could
first attempt the M/PH/N queue, following Puhalskii and
Reiman (2000).
(iv) A first study on staffing algorithms for multiskill

scenarios may be found in Borst and Seri (1997).
In the present paper, we assumed that the offered traf-

fic parameters are exactly known. We then focused on
determining the amount of safety staffing needed to deal
with stochastic variability only. In practice, however, the
offered traffic forecasts are typically not completely ac-
curate (Jongbloed and Koole 2001), and additional staffing
may be required in view of the inherent uncertainty in the
parameters. While the need for accurate forecasts becomes
even more pronounced with the high-level of utilization
advocated by the present work, we still feel that our analy-
sis for known parameters constitutes an essential first step.
Finally one could perhaps use duality theory from math-

ematical programming to relate the optimization approach
to constraint satisfaction. This could possibly add insight
on the optimality criteria for constraint satisfaction, which
should be sharpened.

Appendix A. Proof of Lemma 5.2
Lemma 5.2 For any function x� with lim�→� x� = �,
���x��

�∼Q��x��.

If also x�

sup
� �1/6, then ���x��

�∼ Q�x��. If specifically
x� = 2

√
�/� for some constant 2 > 0, then

���x��
�∼ 1

2
√
2��/��1+2�

(
e2

�1+2�1+2

)�/�

�

Proof. The first statement follows after some manipula-
tions from the proof of Proposition 1 of Halfin and Whitt
(1981). If x� = 2

√
�/� for some constant 2 > 0, then

N��x��= �1+2��/�, r��x��= 1/�1+2�, and 1−r��x��=
2/�1+2�, so that

Q��x��=
1

2
√
2��/��1+2�

(
e2

�1+2�1+2

)�/�

�

We now prove the second statement. Using the Taylor series
expansion

logu= log�1− �1− u��

=−
�∑

m=1

�1− u�m

m
=−�1− u�−

�∑
m=2

�1− u�m

m
�

we obtain

exp
{
N��x��1−r��x�+logr��x� 

}
√
2�N��x��1−r��x��

= exp
{−N��x�

∑�
m=2m

−1�1−r��x��m
}

√
2�N��x��1−r��x��

= exp
{−N��x��1−r��x��2/2−N��x�

∑�
m=3m

−1�1−r��x��m
}

√
2�N��x��1−r��x��

=Q�x�
x√

N��x��1−r��x��
exp�x2−N��x��1−r��x��2 /2�

·exp
{
−N��x�

�∑
m=3

�1−r��x��m

m

}
�

Thus it remains to be shown that

x�√
N��x���1− r��x���

exp�x2� −N��x���1− r��x���
2 /2�

· exp
{
−N��x��

�∑
m=3

�1− r��x���
m

m

} �∼ 1

if x�

�� �1/6.
Note that

√
N��x���1− r��x���=

x�

√
�/�√

�/�+ x�

√
�/�

�∼ x��

and

N��x���1− r��x���
2 = x2��/�

�/�+ x�

√
�/�

�

so that

0� x2� −N��x���1− r��x���
2

= x3�
√

�/�

�/�+ x�

√
�/�

�
x3�√
�/�

�� 1�

Finally,

0�N��x��
�∑

m=3

�1− r��x���
m

m
�N��x��

�∑
m=3

�1− r��x���
m

= N��x���1− r��x���
3

r��x��
�

x3�√
�/�

�� 1�

which completes the proof. �
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Appendix B. Properties of P�·�
Lemma B.1. The function P�·� is strictly convex decreasing.
Proof. The function P�·� may be written P�x� =
1/�1 + U�x��, with U�x� "= x ex2/2V �x�, and V �x� "=∫ x

−� e
−y2/2 dy.

Differentiating, P ′�x� = �−U ′�x�/�1 + U�x��2�, and
P ′′�x�= �2U ′�x�2−U ′′�x��1+U�x���/�1+U�x��3.
Observing that V ′�x� = e−x2/2 and V ′′�x� = −xe−x2/2,

U ′�x�= x+ �x2+1�ex2/2V �x�, and U ′′�x�= x2+2+ �x3+
3x� ex2/2V �x�.
Thus, P�·� is decreasing since U ′�x� > 0 for any x > 0.

Also, P�·� is strictly convex because for any x > 0,

2U ′�x�2−U ′′�x��1+U�x��

= 2[x+ �x2+ 1�ex2/2V �x�
]2

− [
x2+ 2+ �x3+ 3x�ex2/2V �x�

][
1+ xex2/2V �x�

]
= x2− 2+ [

2x3− x
]
ex2/2V �x�

+ [
x4+ x2+ 2][ex2/2V �x�

]2
> x2− 2+ [

x4+ 2x3+ x2− x+ 2ex2/2V �x�
]
ex2/2V �x�

> x2− 2+ [
x4+ 2x3+ x2− x+ 2√�/2

]
ex2/2V �x�

> x2+ [
x4+ 2x3+ x2− x+ 2�√�/2− 1�]ex2/2V �x�

>
[
x2− x+ 2�√�/2− 1�]ex2/2V �x�

= [
�x− 1/2�2+ 2�√�/2− 9/8�]ex2/2V �x� > 0� �

Appendix C. Properties of G��·�
Lemma C.1. The function G��·� is strictly convex de-
creasing.

Proof. It suffices to show that K��·� is strictly convex
decreasing with K��;� "=;

∫ �
0 D��t�e

−;t dt.
Differentiating, K ′

��;� = ∫ �
0 �1 − ;t e−;tD��t�dt, and

K ′′
��;�= ∫ �

0 �;t − 2 te−;tD��t�dt, for all ; > 0.
Since D��·� is strictly increasing, we have �1 − ;t ×

D��t� � �1 − ;t D��;� for all ; > 0, t > 0, with strict
inequality for t �= 1/;, so that
∫ �

0
�1−;t e−;tD��t�dt

< D��1/;�
∫ �

0
�1−;t e−;t dt = 0�

and∫ �

0
�;t − 2 te−;tD��t�dt

> D��2/;�
∫ �

0
�;t − 2 te−;t dt = 0�

for all ; > 0. �
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